Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 273
Filter
1.
Sci Bull (Beijing) ; 69(9): 1323-1331, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38472018

ABSTRACT

The Indo-Pacific warm pool (IPWP) is crucial for regional and global climates. However, the development of the IPWP and its effect on the regional climate during the Cenozoic remain unclear. Here, using a compilation of sea surface temperature (SST) records (mainly since the middle Miocene) and multimodel paleoclimate simulations, our results indicated that the extent, intensity and warmest temperature position of the IPWP changed markedly during the Cenozoic. Specifically, its extent decreased, its intensity weakened, and its warmest temperature position shifted from the Indian to western Pacific Ocean over time. The atmospheric CO2 dominated its extent and intensity, while paleogeography, by restricting the distribution of the Indian Ocean and the width of the tropical seaways, controlled the shift in its warmest temperature position. In particular, the eastward shift to the western Pacific Ocean from the middle to late Miocene inferred from compiled SST records likely resulted from the constriction of tropical seaways. Furthermore, by changing the atmospheric thermal structure and atmospheric circulation, the reduced extent and intensity of the IPWP decreased the annual precipitation in the western Indian Ocean, eastern Asia and Australia, while the shift in the warmest temperature position from the Indian to western Pacific Ocean promoted aridification in Australia. Qualitative model-data agreements are obtained for both the IPWP SST and regional climate. From the perspective of past warm climates with high concentrations of atmospheric CO2, the expansion and strengthening of the IPWP will occur in a warmer future and favor excessive precipitation in eastern Asia and Australia.

2.
Front Endocrinol (Lausanne) ; 15: 1335899, 2024.
Article in English | MEDLINE | ID: mdl-38510696

ABSTRACT

Objective: This study aims to determine the effectiveness of T1ρ in detecting myocardial fibrosis in type 2 diabetes mellitus (T2DM) patients by comparing with native T1 and extracellular volume (ECV) fraction. Methods: T2DM patients (n = 35) and healthy controls (n = 30) underwent cardiac magnetic resonance. ECV, T1ρ, native T1, and global longitudinal strain (GLS) values were assessed. Diagnostic performance was analyzed using receiver operating curves. Results: The global ECV and T1ρ of T2DM group (ECV = 32.1 ± 3.2%, T1ρ = 51.6 ± 3.8 msec) were significantly higher than those of controls (ECV = 26.2 ± 1.6%, T1ρ = 46.8 ± 2.0 msec) (all P < 0.001), whether there was no significant difference in native T1 between T2DM and controls (P = 0.264). The GLS decreased significantly in T2DM patients compared with controls (-16.5 ± 2.4% vs. -18.3 ± 2.6%, P = 0.015). The T1ρ and native T1 were associated with ECV (Pearson's r = 0.50 and 0.25, respectively, both P < 0.001); the native T1, T1ρ, and ECV were associated with hemoglobin A1c (Pearson's r = 0.41, 0.52, and 0.61, respectively, all P < 0.05); and the ECV was associated with diabetes duration (Pearson's r = 0.41, P = 0.016). The AUC of ECV, T1ρ, GLS, and native T1 were 0.869, 0.810, 0.659, and 0.524, respectively. Conclusion: In T2DM patients, T1ρ may be a new non-contrast cardiac magnetic resonance technique for identifying myocardial diffuse fibrosis, and T1ρ may be more sensitive than native T1 in the detection of myocardial diffuse fibrosis.


Subject(s)
Cardiomyopathies , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnostic imaging , Diabetes Mellitus, Type 2/pathology , Myocardium/pathology , Heart , Cardiomyopathies/pathology , Fibrosis , Magnetic Resonance Spectroscopy
3.
Neurocrit Care ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38506972

ABSTRACT

BACKGROUND: Frequency of imaging markers (FIM) has been identified as an independent predictor of hematoma expansion in patients with intracerebral hemorrhage (ICH), but its impact on clinical outcome of ICH is yet to be determined. The aim of the present study was to investigate this association. METHODS: This study was a secondary analysis of our prior research. The data for this study were derived from six retrospective cohorts of ICH from January 2018 to August 2022. All consecutive study participants were examined within 6 h of stroke onset on neuroimaging. FIM was defined as the ratio of the number of imaging markers on noncontrast head tomography (i.e., hypodensities, blend sign, and island sign) to onset-to-neuroimaging time. The primary poor outcome was defined as a modified Rankin Scale score of 3-6 at 3 months. RESULTS: A total of 1253 patients with ICH were included for final analysis. Among those with available follow-up results, 713 (56.90%) exhibited a poor neurologic outcome at 3 months. In a univariate analysis, FIM was associated with poor prognosis (odds ratio 4.36; 95% confidence interval 3.31-5.74; p < 0.001). After adjustment for age, Glasgow Coma Scale score, systolic blood pressure, hematoma volume, and intraventricular hemorrhage, FIM was still an independent predictor of worse prognosis (odds ratio 3.26; 95% confidence interval 2.37-4.48; p < 0.001). Based on receiver operating characteristic curve analysis, a cutoff value of 0.28 for FIM was associated with 0.69 sensitivity, 0.66 specificity, 0.73 positive predictive value, 0.62 negative predictive value, and 0.71 area under the curve for the diagnosis of poor outcome. CONCLUSIONS: The metric of FIM is associated with 3-month poor outcome after ICH. The novel indicator that helps identify patients who are likely within the 6-h time window at risk for worse outcome would be a valuable addition to the clinical management of ICH.

4.
Neuroimage ; 290: 120558, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38437909

ABSTRACT

The prolonged duration of chronic low back pain (cLBP) inevitably leads to changes in the cognitive, attentional, sensory and emotional processing brain regions. Currently, it remains unclear how these alterations are manifested in the interplay between brain functional and structural networks. This study aimed to predict the Oswestry Disability Index (ODI) in cLBP patients using multimodal brain magnetic resonance imaging (MRI) data and identified the most significant features within the multimodal networks to aid in distinguishing patients from healthy controls (HCs). We constructed dynamic functional connectivity (dFC) and structural connectivity (SC) networks for all participants (n = 112) and employed the Connectome-based Predictive Modeling (CPM) approach to predict ODI scores, utilizing various feature selection thresholds to identify the most significant network change features in dFC and SC outcomes. Subsequently, we utilized these significant features for optimal classifier selection and the integration of multimodal features. The results revealed enhanced connectivity among the frontoparietal network (FPN), somatomotor network (SMN) and thalamus in cLBP patients compared to HCs. The thalamus transmits pain-related sensations and emotions to the cortical areas through the dorsolateral prefrontal cortex (dlPFC) and primary somatosensory cortex (SI), leading to alterations in whole-brain network functionality and structure. Regarding the model selection for the classifier, we found that Support Vector Machine (SVM) best fit these significant network features. The combined model based on dFC and SC features significantly improved classification performance between cLBP patients and HCs (AUC=0.9772). Finally, the results from an external validation set support our hypotheses and provide insights into the potential applicability of the model in real-world scenarios. Our discovery of enhanced connectivity between the thalamus and both the dlPFC (FPN) and SI (SMN) provides a valuable supplement to prior research on cLBP.


Subject(s)
Connectome , Low Back Pain , Humans , Low Back Pain/diagnostic imaging , Brain , Thalamus , Magnetic Resonance Imaging/methods
5.
Heliyon ; 10(5): e27380, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38495174

ABSTRACT

Aim: To evaluate the subclinical cardiac involvement in COVID-19 patients without clinical cardiac evidence using cardiac MR imaging. Material and methods: Participants recovered from COVID-19 without cardiac symptoms and no cardiovascular medical history were enrolled in a prospective cohort study. They underwent baseline cardiac MR and follow-up cardiac MR > 300 days after discharge (n = 20). The study also included healthy controls (n = 20). Extracellular volume fraction (ECV), native T1, and 2D strain data were assessed and compared. Results: The ECV values of participants at baseline [30.0% (28.3%-32.5%)] and at follow-up [31.0% (28.0%-32.8%)] were increased compared to the healthy control group [27.0% (25.3%-28.0%)] (both p < 0.001). However, the ECV increase from baseline cardiac MR to follow-up cardiac MR was not significant (p = 0.378). There was a statistically significant difference in global native T1 between baseline [1140 (1108.3-1192.0) ms] and follow-up [1176.0 (1113.0-1206.3) ms] (p = 0.016). However, no native T1 difference was found between the healthy controls [1160.7 (1119.6-1195.4) ms] and the baseline (p = 0.394) or follow-up group (p = 0.168). The global T2 was 41(40-42) ms at follow-up which was within the normal range. In addition, We found a recovery in 2D GLS among COVID-19 participants between baseline and follow-up [-12.4(-11.7 to -14.3)% vs. -17.2(-16.2 to -18.3)%; p<0.001]. Conclusion: Using cardiac MR myocardial tissue and strain imaging parameters, 35% of people without cardiac symptoms or clinical evidence of myocardial injury still had subclinical myocardial tissue characteristic abnormalities at 300 days, but 2D GLS had recovered.

6.
J Neurosci Res ; 102(3): e25307, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38444265

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive decline. Sex differences in the progression of AD exist, but the neural mechanisms are not well understood. The purpose of the current study was to explore sex differences in brain functional connectivity (FC) at different stages of AD and their predictive ability on Montreal Cognitive Assessment (MoCA) scores using connectome-based predictive modeling (CPM). Resting-state functional magnetic resonance imaging was collected from 81 AD patients (44 females), 78 amnestic mild cognitive impairment patients (44 females), and 92 healthy controls (50 females). The FC analysis was conducted and the interaction effect between sex and group was investigated using two-factor variance analysis. The CPM was used to predict MoCA scores. There were sex-by-group interaction effects on FC between the left dorsolateral superior frontal gyrus and left middle temporal gyrus, left precuneus and right calcarine fissure surrounding cortex, left precuneus and left middle occipital gyrus, left middle temporal gyrus and left precentral gyrus, and between the left middle temporal gyrus and right cuneus. In the CPM, the positive network predictive model significantly predicted MoCA scores in both males and females. There were significant sex-by-group interaction effects on FC between the left precuneus and left middle occipital gyrus, and between the left middle temporal gyrus and right cuneus could predict MoCA scores in female patients. Our results suggest that there are sex differences in FC at different stages of AD. The sex-specific FC can further predict MoCA scores at individual level.


Subject(s)
Alzheimer Disease , Connectome , Neurodegenerative Diseases , Female , Humans , Male , Alzheimer Disease/diagnostic imaging , Sex Characteristics , Temporal Lobe
7.
Psychol Med ; : 1-11, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38482853

ABSTRACT

BACKGROUND: Growing evidence points to the pivotal role of vitamin D in the pathophysiology and treatment of major depressive disorder (MDD). However, there is a paucity of longitudinal research investigating the effects of vitamin D supplementation on the brain of MDD patients. METHODS: We conducted a double-blind randomized controlled trial in 46 MDD patients, who were randomly allocated into either VD (antidepressant medication + vitamin D supplementation) or NVD (antidepressant medication + placebos) groups. Data from diffusion tensor imaging, resting-state functional MRI, serum vitamin D concentration, and clinical symptoms were obtained at baseline and after an average of 7 months of intervention. RESULTS: Both VD and NVD groups showed significant improvement in depression and anxiety symptoms but with no significant differences between the two groups. However, a greater increase in serum vitamin D concentration was found to be associated with greater improvement in depression and anxiety symptoms in VD group. More importantly, neuroimaging data demonstrated disrupted white matter integrity of right inferior fronto-occipital fasciculus along with decreased functional connectivity between right frontoparietal and medial visual networks after intervention in NVD group, but no changes in VD group. CONCLUSIONS: These findings suggest that vitamin D supplementation as adjunctive therapy to antidepressants may not only contribute to improvement in clinical symptoms but also help preserve brain structural and functional connectivity in MDD patients.

8.
Schizophr Bull ; 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38401526

ABSTRACT

BACKGROUND AND HYPOTHESIS: Neuroimaging studies investigating the neural substrates of auditory verbal hallucinations (AVH) in schizophrenia have yielded mixed results, which may be reconciled by network localization. We sought to examine whether AVH-state and AVH-trait brain alterations in schizophrenia localize to common or distinct networks. STUDY DESIGN: We initially identified AVH-state and AVH-trait brain alterations in schizophrenia reported in 48 previous studies. By integrating these affected brain locations with large-scale discovery and validation resting-state functional magnetic resonance imaging datasets, we then leveraged novel functional connectivity network mapping to construct AVH-state and AVH-trait dysfunctional networks. STUDY RESULTS: The neuroanatomically heterogeneous AVH-state and AVH-trait brain alterations in schizophrenia localized to distinct and specific networks. The AVH-state dysfunctional network comprised a broadly distributed set of brain regions mainly involving the auditory, salience, basal ganglia, language, and sensorimotor networks. Contrastingly, the AVH-trait dysfunctional network manifested as a pattern of circumscribed brain regions principally implicating the caudate and inferior frontal gyrus. Additionally, the AVH-state dysfunctional network aligned with the neuromodulation targets for effective treatment of AVH, indicating possible clinical relevance. CONCLUSIONS: Apart from unifying the seemingly irreproducible neuroimaging results across prior AVH studies, our findings suggest different neural mechanisms underlying AVH state and trait in schizophrenia from a network perspective and more broadly may inform future neuromodulation treatment for AVH.

9.
J Imaging Inform Med ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388867

ABSTRACT

The aim of this study is to assess the feasibility of compressed sensing (CS) acceleration methods compared to conventional segmented cine (Seg) cardiac magnetic resonance (CMR) for evaluating left ventricular (LV) function and strain by feature tracking (FT). In this prospective study, 45 healthy volunteers underwent CMR imaging used Seg, threefold (CS3), fourfold (CS4), and eightfold (CS8) CS acceleration. Cine images were scored for quality (1-5 scale). LV volumetric and functional parameters and global longitudinal (GLS), circumferential (GCS), and radial strains (GRS) were quantified. LV volumetric and functional parameters exhibited no differences between Seg and all CS cines (all P > 0.05). The strains were similar for Seg, CS3, and CS4 (all P > 0.05). Similarly, no significant differences were observed in GRS and GCS between Seg and CS8 (all P > 0.05), but the global longitudinal strain was significantly lower for CS8 versus Seg (P < 0.001). Image quality declined with CS acceleration, especially in long-axis views with CS8. CS cine MRI at acceleration factor 4 maintained good image quality and accurate measurements of LV function and strain, although there was a slight reduction in the quality of long-axis images and GLS with CS8. CS acceleration up to a factor of 4 enabled fast CMR evaluations, making it suitable for clinical use.

10.
J Magn Reson Imaging ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168067

ABSTRACT

BACKGROUND: To facilitate the clinical use of cardiac T1ρ, it is important to understand the impact of age and sex on T1ρ values of the myocardium. PURPOSE: To investigate the impact of age and gender on myocardial T1ρ values. STUDY TYPE: Cross-sectional. POPULATION: Two hundred ten healthy Han Chinese volunteers without cardiovascular risk factors (85 males, mean age 34.4 ± 12.5 years; 125 females, mean age 37.9 ± 14.8 years). FIELD STRENGTH/SEQUENCE: 1.5 T; T1ρ-prepared steady-state free precession (T1ρ mapping) sequence. ASSESSMENT: Basal, mid, and apical short-axis left ventricular T1ρ maps were acquired. T1ρ maps acquired with spin-lock frequencies of 5 and 400 Hz were subtracted to create a myocardial fibrosis index (mFI) map. T1ρ and mFI values across different age decades, sex, and slice locations were compared. STATISTICAL TESTS: Shapiro-Wilk test, Student's t test, Mann-Whitney U test, linear regression analysis, one-way analysis of variance and intraclass correlation coefficient. SIGNIFICANCE: P value <0.05. RESULTS: Women had significantly higher T1ρ and mFI values than men (50.3 ± 2.0 msec vs. 47.7 ± 2.4 msec and 4.7 ± 1.0 msec vs. 4.3 ± 1.1 msec, respectively). Additionally, in males and females combined, there was a significant positive but weak correlation between T1ρ values and age (r = 0.27), while no correlation was observed between the mFI values and age (P = 0.969). DATA CONCLUSION: We report potential reference values for cardiac T1ρ by sex, age distribution, and slice location in a Chinese population. T1ρ was significantly correlated with age and sex, while mFI was only associated with sex. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.

11.
Insights Imaging ; 15(1): 24, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38270718

ABSTRACT

OBJECTIVES: To explore the characteristics of myocardial involvement in Wilson Disease (WD) patients by cardiac magnetic resonance (CMR). METHODS: We prospectively included WD patients and age- and sex-matched healthy population. We applied CMR to analyze cardiac function, strain, T1 maps, T2 maps, extracellular volume fraction (ECV) maps, and LGE images. Subgroup analyzes were performed for patients with WD with predominantly neurologic manifestations (WD-neuro +) or only hepatic manifestations (WD-neuro -). RESULTS: Forty-one WD patients (age 27.9 ± 8.0 years) and 40 healthy controls (age 25.4 ± 2.9 years) were included in this study. Compared to controls, the T1, T2, and ECV values were significantly increased in the WD group (T1 1085.1 ± 39.1 vs. 1046.5 ± 33.1 ms, T2 54.2 ± 3.3 ms vs. 51.5 ± 2.6 ms, ECV 31.8 ± 3.6% vs. 24.3 ± 3.7%) (all p < 0.001). LGE analysis revealed that LGE in WD patients was predominantly localized to the right ventricular insertion point and interventricular septum. Furthermore, the WD-neuro + group showed more severe myocardial damage compared to WD-neuro - group. The Unified Wilson Disease Rating Scale score was significantly correlated with ECV (Pearson's r = 0.64, p < 0.001). CONCLUSIONS: CMR could detect early myocardial involvement in WD patients without overt cardiac function dysfunction. Furthermore, characteristics of myocardial involvement were different between WD-neuro + and WD-neuro - , and myocardial involvement might be more severe in WD-neuro + patients. CRITICAL RELEVANCE STATEMENT: Cardiac magnetic resonance enables early detection of myocardial involvement in Wilson disease patients, contributing to the understanding of distinct myocardial characteristics in different subgroups and potentially aiding in the assessment of disease severity. KEY POINTS: • CMR detects WD myocardial involvement with increased T1, T2, ECV. • WD-neuro + patients show more severe myocardial damage and correlation with ECV. • Differences of myocardial characteristics exist between WD-neuro + and WD-neuro - patients.

12.
Korean J Radiol ; 25(2): 166-178, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38238018

ABSTRACT

OBJECTIVE: This study aimed to determine the predictive performance of non-contrast CT (NCCT) signs for hemorrhagic growth after intracerebral hemorrhage (ICH) when stratified by onset-to-imaging time (OIT). MATERIALS AND METHODS: 1488 supratentorial ICH within 6 h of onset were consecutively recruited from six centers between January 2018 and August 2022. NCCT signs were classified according to density (hypodensities, swirl sign, black hole sign, blend sign, fluid level, and heterogeneous density) and shape (island sign, satellite sign, and irregular shape) features. Multivariable logistic regression was used to evaluate the association between NCCT signs and three types of hemorrhagic growth: hematoma expansion (HE), intraventricular hemorrhage growth (IVHG), and revised HE (RHE). The performance of the NCCT signs was evaluated using the positive predictive value (PPV) stratified by OIT. RESULTS: Multivariable analysis showed that hypodensities were an independent predictor of HE (adjusted odds ratio [95% confidence interval] of 7.99 [4.87-13.40]), IVHG (3.64 [2.15-6.24]), and RHE (7.90 [4.93-12.90]). Similarly, OIT (for a 1-h increase) was an independent inverse predictor of HE (0.59 [0.52-0.66]), IVHG (0.72 [0.64-0.81]), and RHE (0.61 [0.54-0.67]). Blend and island signs were independently associated with HE and RHE (10.60 [7.36-15.30] and 10.10 [7.10-14.60], respectively, for the blend sign and 2.75 [1.64-4.67] and 2.62 [1.60-4.30], respectively, for the island sign). Hypodensities demonstrated low PPVs of 0.41 (110/269) or lower for IVHG when stratified by OIT. When OIT was ≤ 2 h, the PPVs of hypodensities, blend sign, and island sign for RHE were 0.80 (215/269), 0.90 (142/157), and 0.83 (103/124), respectively. CONCLUSION: Hypodensities, blend sign, and island sign were the best NCCT predictors of RHE when OIT was ≤ 2 h. NCCT signs may assist in earlier recognition of the risk of hemorrhagic growth and guide early intervention to prevent neurological deterioration resulting from hemorrhagic growth.


Subject(s)
Cerebral Hemorrhage , Tomography, X-Ray Computed , Humans , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/complications , Tomography, X-Ray Computed/methods , Predictive Value of Tests , Hematoma/diagnostic imaging , Logistic Models , Retrospective Studies
13.
Int J Stroke ; 19(2): 226-234, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37740692

ABSTRACT

BACKGROUND: Hematoma expansion (HE) is common in patients with intracerebral hemorrhage (ICH) and associated with a worse outcome. Imaging makers and shorter time from symptom onset are both associated with HE, but prognostic scores based on these parameters individually have not been satisfactory. We hypothesized that a score including both imaging markers of expansion, and time of onset, would improve prediction. METHODS: Patients with supratentorial ICH within 6 h after onset were consecutively recruited from six centers between January 2018 and August 2022. Three markers were used: hypodensities, the blend sign, and the island sign. We first defined frequency of imaging markers (FIM) as the relationship between the number of imaging markers and onset-to-CT time (OCT). The time-adjusted FIM was defined as the ratio of the number of imaging markers to the onset-to-initial imaging time. Multivariate analysis was performed to determine the relationship between FIM and HE. Receiver operating curve analysis was used to identify potential threshold values of FIM that optimally predict HE. In addition, the sensitivity, specificity, positive and negative predictive values (PPVs and NPVs), and the area under the curve (AUC) of the optimal cut-off in predicting HE were calculated. RESULTS: In total, 1488 patients were eligible for inclusion, of whom 418 had incident HE. Multivariate analysis showed that age, male sex, baseline Glasgow Coma Scale score, presence of intraventricular hemorrhage, and FIM were independent predictors of HE (odds ratio (OR) = 0.98, 95% confidence interval (CI) = 0.97-0.99; OR = 1.73, 95% CI = 1.28-2.35; OR = 0.87, 95% CI = 0.83-0.92; OR = 0.42, 95% CI = 0.28-0.62; OR = 7.82, 95% CI = 5.86-10.42, respectively). The optimal cut-off point for FIM in predicting HE was 0.63, with sensitivity, specificity, PPV, NPV, and AUC values of 0.69, 0.89, 0.71, 0.88, and 0.83, respectively. CONCLUSION: The FIM adjusted for time since symptom onset is a significant predictor of HE. Its use may allow improved prediction of those patients with ICH who develop HE, and the score may be clinically applicable in the management of patients with ICH.


Subject(s)
Stroke , Humans , Male , Stroke/complications , Cerebral Hemorrhage/complications , Hematoma/diagnostic imaging , Hematoma/complications , Tomography, X-Ray Computed , Computed Tomography Angiography , Retrospective Studies
14.
J Periodontal Res ; 59(2): 299-310, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38014515

ABSTRACT

BACKGROUND: Numerous studies have proposed that periodontitis is a potential risk factor for Alzheimer's disease. However, the association between periodontitis and brain normal cognition in aged and elderly individuals (NCs) is unclear. Such a link could provide clues to Alzheimer's disease development and strategies for early prevention. OBJECTIVE: To explore the associations between periodontal condition and metrics of both brain structure and function among NCs with the help of multimodal magnetic resonance imaging (MRI). METHODS: High-resolution T1-weighted structural data, resting-state functional-MRI data, and measures of periodontal condition were collected from 40 NCs. Cortical volume, thickness, and area as well as regional homogeneity were calculated with the aid of DPABISurf software. Correlation analyses were then conducted between each imaging metric and periodontal index. RESULTS: Consistent negative correlations were observed between severity of periodontitis (mild, moderate, severe) and cortical volume, area, and thickness, not only in brain regions that took charge of primary function but also in brain regions associated with advanced cognition behavior. Among participants with mild attachment loss (AL) and a shallow periodontal pocket depth (PPD), periodontal index was positively correlated with most measures of brain structure and function, while among participants with severe AL and deep PPD, periodontal index was negatively correlated with measures of brain structure and function (all p < .005 for each hemisphere). CONCLUSIONS: Our results demonstrate that periodontitis is associated with widespread changes in brain structure and function among middle-aged and elderly adults without signs of cognitive decline, which might be a potential risk factor for brain damage.


Subject(s)
Alzheimer Disease , Periodontal Diseases , Periodontitis , Aged , Adult , Middle Aged , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Periodontitis/complications , Periodontitis/diagnostic imaging , Periodontitis/pathology , Cognition , Brain/diagnostic imaging , Brain/pathology , Periodontal Diseases/pathology
15.
Brain Res Bull ; 205: 110837, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38043647

ABSTRACT

Neuroimaging research has revealed significant changes in brain structure and function in patients with cervical spondylotic myelopathy(CSM). The thalamus plays a crucial role in this process, although its mechanisms of action remain incompletely understood. This study aimed to investigate whether spinal cord compression leads to alterations in the functional connectivity between the thalamus and the cerebral cortex, and to determine if such changes are associated with structural and functional remodeling of the brain in patients with CSM, and to identify potential neuroimaging biomarkers for classification. The study included 40 patients with CSM and 34 healthy controls(HCs) who underwent resting-state functional magnetic resonance imaging(fMRI) and structural MRI scans. Brain structural and functional metrics were quantified using functional connectivity(FC), fractional amplitude of low-frequency fluctuations(fALFF), surface-based morphometry(SBM), and independent component analysis(ICA) based on functional and structural MRI. Patients with CSM exhibited significantly reduced fALFF in the bilateral lateral lingual gyrus, bilateral calcarine fissure, left precentral gyrus and postcentral gyrus, left middle and superior occipital gyrus, left superior marginal gyrus, left inferior parietal gyrus, and right Rolandic operculum. ICA results revealed weakened functional connectivity between the sensorimotor network (SMN) and the left and right frontoparietal network(FPN), and lateral visual network (lVN), along with decreased connectivity between lVN and rFPN, and increased connectivity between lFPN and rFPN. Patients with CSM also had decreased sulcus depth in the bilateral insula, left precentral and postcentral gyrus, and right lingual gyrus and calcarine fissure. Furthermore, cervical spondylotic myelopathy patients showed decreased functional connectivity between the left ventral posterolateral nucleus (VPL) of the thalamus and the right middle occipital gyrus (MOG). Finally,multimodal neuroimaging with support vector machine(SVM) classified patients with CSM and healthy controls with 86.00% accuracy. Our study revealed that the decrease in functional connectivity between the thalamus and cortex mediated by spinal cord compression leads to structural and functional reorganization of the cortex. Features based on neuroimaging markers have the potential to become neuroimaging biomarkers for CSM.


Subject(s)
Spinal Cord Compression , Spinal Cord Diseases , Humans , Cerebral Cortex/diagnostic imaging , Magnetic Resonance Imaging/methods , Thalamus/diagnostic imaging , Biomarkers
16.
Materials (Basel) ; 16(21)2023 Oct 29.
Article in English | MEDLINE | ID: mdl-37959535

ABSTRACT

The effect of electropulsing treatment (EPT) on the microstructure of the as-cast 2024 Al alloy at room temperature was investigated. The results show that EPT remarkably accelerated the spheroidizing of second phase (S phase) in the as-cast 2024 Al alloy. The mechanism for rapid spheroidizing of the second phase was proposed based on not only the accelerated dissolution, but also the growth of particles. The morphology and size of the secondary phase could be controlled by changing the cooling speed of the specimen after EPT. Furthermore, the dissolving process of the randomly distributed S phase was recognized as the combination effect of the two basic dissolving ways. Hence, the EPT can be applied to improve the microstructure and properties of the alloys.

17.
Psychiatry Res ; 330: 115598, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37979320

ABSTRACT

Major depressive disorder (MDD) is a heterogeneous syndrome, and understanding its neural mechanisms is crucial for the advancement of personalized medicine. However, conventional subtyping studies often categorize MDD patients into a single subgroup, neglecting the continuous interindividual variations. This implies a pressing need for a dimensional approach. 230 first-episode drug-naïve MDD patients and 395 healthy controls were obtained from 5 sites via the Rest-meta-MDD project. A Bayesian model was used to decompose the resting-state functional connectivity (RSFC) into multiple distinct RSFC patterns (refer to as "factors"), and each individual was allowed to express multiple factors to varying degrees (dimensional subtyping). The associations between demographic and clinical variables with the identified factors were calculated. We identified three latent factors with distinct but partially overlapping hypo- and hyper-RSFC patterns. Most participants co-expressed multiple latent factors. All factors shared abnormal RSFC involving the default mode network and frontoparietal network, but the directionality partially differed across factors. All factors were not significantly associated with demographic and clinical variables. These findings shed light on the interindividual variability in MDD and could form the basis for developing novel therapeutic approaches that capitalize on the heterogeneity of MDD.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnostic imaging , Magnetic Resonance Imaging/methods , Bayes Theorem , Neural Pathways , Rest , Brain/diagnostic imaging , Brain Mapping
18.
Cell ; 186(25): 5457-5471.e17, 2023 12 07.
Article in English | MEDLINE | ID: mdl-37979582

ABSTRACT

Extracellular perception of auxin, an essential phytohormone in plants, has been debated for decades. Auxin-binding protein 1 (ABP1) physically interacts with quintessential transmembrane kinases (TMKs) and was proposed to act as an extracellular auxin receptor, but its role was disputed because abp1 knockout mutants lack obvious morphological phenotypes. Here, we identified two new auxin-binding proteins, ABL1 and ABL2, that are localized to the apoplast and directly interact with the extracellular domain of TMKs in an auxin-dependent manner. Furthermore, functionally redundant ABL1 and ABL2 genetically interact with TMKs and exhibit functions that overlap with those of ABP1 as well as being independent of ABP1. Importantly, the extracellular domain of TMK1 itself binds auxin and synergizes with either ABP1 or ABL1 in auxin binding. Thus, our findings discovered auxin receptors ABL1 and ABL2 having functions overlapping with but distinct from ABP1 and acting together with TMKs as co-receptors for extracellular auxin.


Subject(s)
Arabidopsis , Indoleacetic Acids , Plant Growth Regulators , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Arabidopsis/chemistry , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
19.
J Environ Manage ; 348: 119156, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37837764

ABSTRACT

Black soldier fly larvae (BSFL) have potential utility in converting livestock manure into larval biomass as a protein source for livestock feed. However, BSFL have limited ability to convert dairy manure (DM) rich in lignocellulose. Our previous research demonstrated that feeding BSFL with mixtures of 40% dairy manure and 60% chicken manure (DM40) provides a novel strategy for significantly improving their efficiency in converting DM. However, the mechanisms underlying the efficient conversion of DM40 by BSFL are unclear. In this study, we conducted a holistic study on the taxonomic stucture and potential functions of microbiota in the larval gut and manure during the DM and DM40 conversion by BSFL, as well as the effects of BSFL on cellulosic biodegradation and biomass production. Results showed that BSFL can consume cellulose and other nutrients more effectively and harvest more biomass in a shorter conversion cycle in the DM40 system. The larval gut in the DM40 system yielded a higher microbiota complexity. Bacillus and Amphibacillus in the BSFL gut were strongly correlated with the larval cellulose degradation capacity. Furthermore, in vitro screening results for culturable cellulolytic microbes from the larval guts showed that the DM40 system isolated more cellulolytic microbes. A key bacterial strain (DM40L-LB110; Bacillus subtilis) with high cellulase activity from the larval gut of DM40 was validated for potential industrial applications. Therefore, mixing an appropriate proportion of chicken manure into DM increased the abundance of intestinal bacteria (Bacillus and Amphibacillus) producing cellulase and improved the digestion ability (particularly cellulose degradation) of BSFL to cellulose-rich manure through changes in microbial communities composition in intestine. This study reveals the microecological mechanisms underlying the high-efficiency conversion of cellulose-rich manure by BSFL and provide potential applications for the large-scale cellulose-rich wastes conversion by intestinal microbes combined with BSFL.


Subject(s)
Cellulases , Diptera , Animals , Larva , Manure , Chickens , Cellulose , Bacillus subtilis , Digestion
20.
Neuroimage ; 283: 120415, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37863277

ABSTRACT

Previous literature has established the presence of sex differences in behavioral inhibition as well as its neural substrates and related disease risk. However, there is limited evidence that speaks directly to the question of whether or not there are sex-dependent associations between behavioral inhibition and resting-state brain function and, if so, how they are modulated by the underlying molecular mechanisms. We computed functional connectivity density (FCD) using resting-state functional MRI data to examine their associations with behavioral inhibition ability measured using a Go/No-Go task across a large cohort of 510 healthy young adults. Then, we examined the spatial relationships of the FCD correlates of behavioral inhibition with gene expression and neurotransmitter atlases to explore their potential genetic architecture and neurochemical basis. A significant negative correlation between behavioral inhibition and FCD in the left superior parietal lobule was found in females but not males. Further spatial correlation analyses demonstrated that the identified neural correlates of behavioral inhibition were associated with expression of gene categories predominantly implicating essential components of the cerebral cortex (glial cell, neuron, axon, dendrite, and synapse) and ion channel activity, as well as were linked to the serotonergic system. Our findings may not only yield important insights into the molecular mechanisms underlying the female-specific neural substrates of behavioral inhibition, but also provide a critical context for understanding how biological sex might contribute to variation in behavioral inhibition and its related disease risk.


Subject(s)
Brain Mapping , Brain , Young Adult , Humans , Female , Male , Brain/physiology , Cerebral Cortex , Parietal Lobe , Inhibition, Psychological
SELECTION OF CITATIONS
SEARCH DETAIL
...